
2 It’s a Snap
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Figure 1: The six possibilities for connections between two rows of three posts.
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Figure 2: A grid with three strings. Figure 3: A •B = E.

We begin with a problem that ties together ideas from geometry, complex numbers, matrices, combinatorics,
and group theory. You have studied geometry, complex numbers, and combinatorics before, so you should
have a basis to start this investigation, but the other two topics may be a bit unfamiliar.

Figure 1 depicts the six ways the posts in two rows, each row containing three posts, can be paired up.
Convince yourself that these are the only six. We label them I, A, B, C, D, and E. For example, I pairs
every post in the top row with the post directly below it, while A switches the pairings of the second and third
posts.

Consider a grid of posts with three rows and three columns. An elastic string is anchored to one post in
the top row, looping around a post in the middle row, and finally descending to a post in the bottom row. Two
other strings are anchored and looped in the same way, with the condition that each post has exactly one
string touching it. An example is depicted in Figure 2.

Notice that we can easily represent such a grid of posts with two of our six elements. You should have two
stacked elements, X and Y , with Y on top of X, as shown in Figure 2. When you remove the middle posts
(the posts indicated by ◦), the elastic string will snap to one of the six configurations we drew initially. Let’s
call this operation “snap,” or •, so that X • Y reads “X snap Y .” Keep in mind that when evaluating the snap
operation, the bottom configuration X goes first, and the top configuration Y goes last. In Figure 2, X = B
and Y = C, and X • Y makes E, so B • C = E. As another example, A •B = E, as shown in Figure 3.

Why do we put the bottom configuration first and the top configuration last? This choice is somewhat
arbitrary, but there is a reason. Remember that when we compose functions, we write (f ◦ g)(x) = f(g(x)).
The right function, g, is evaluated first and used as an input to the left function, f . Similarly, when we write
X • Y , the overall configuration (from top to bottom) first goes through Y , then through X. As we will see,
these six elements often behave more like functions, rather than simply elements. Thus, it is natural to order
them as if they were functions.

Some important terminology: These six configurations form a mathematical group under the operation •,
and we say that each configuration is an element of our group. More specifically, we will call this group the
three-post snap group, or S3. There are countless other mathematical groups, so we must be precise when
we talk about a specific group. Note that this snap group is denoted S3, not S6, because the subscript 3 is the
number of posts in each row, not the size of the group. Groups are, unsurprisingly, the main objects studied
in group theory. Let’s study this snap group and characterize its properties.

1. Fill out a 6×6 table like the one in Figure 4, showing the results of each of the 36 possible snaps, where
X • Y is in X ’s row and Y ’s column. A •B = E is done for you.

2. Which of the elements is the identity element K, such that X •K = K •X = X for all X?

3. Does every element have an inverse? In other words, can you get to the identity element from every
element using only one snap?

4. (a) Is the snap operation commutative (does X • Y = Y •X for all X,Y )?

(b) Is the snap operation associative (does (X • Y ) • Z = X • (Y • Z) for all X,Y, Z)?

5. (a) For any elements X,Y , is there always an element Z so that X • Z = Y ?

(b) In (a), is Z always unique?
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Figure 4: Unfilled 3-post snap group table. Figure 5: Failed attempt at a group table with 5
elements.

snap!
=⇒

Figure 6: E • E • E = I; E has period 3. Figure 7: Some 4-post group elements.

6. If you constructed a group table using only 5 of the snap elements, the table would not describe a group,
because there would be entries in the table outside of those 5. (See Figure 5 for a failed attempt at a
group table, in which the element A was omitted.) Indeed, a group must be closed under its operation:
If we compose any two elements X •Y = Z, Z must also be an element of the group. Some subsets of
our six elements, however, do happen to be closed among themselves. Write valid group tables using
exactly one, two, and three elements from the snap group. These are known as subgroups.

7. What do you guess is a good definition of a mathematical group? (Hint: consider your answers to
Problems 2–6.)

8. Notice that E • E • E = I (see Figure 6). We saw that E has a period of 3 when acting upon itself.
Which elements have a period of

(a) 1? (b) 2? (c) 3?

9. Answer the following with the one-, two-, and four-post snap groups S1, S2 and S4. These are just the
analogous groups for connections between rows of one, two, and four posts.

(a) How many elements does the group have?

(b) Systematically draw and name the elements.

(c) Make a group table of these elements. For four posts, instead of creating a table, give the number
of entries that the table would have.

(d) What is the relationship of the S3 table to this new table?

10. What is a shortcut for generating all elements of a snap group without drawing out the possible config-
urations?

11. (a) How many elements would there be in the five-post snap group?

(b) How many entries would its table have?

(c) What possible periods would its elements have? Make sure you include a period of six!

(d) Extend your answers for Problems 11a through 11c to M posts per row.

12. A permutation of a set of things is an order in which they can be arranged. What is the relationship
between the set of permutations of m things and the m-post snap group?
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